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Abstract: 

ADIRECT SYWTEEiSIS OF 1,3-BIS(BEKNOMAGWSSIO)PRDPAWE 

J.W.F.L. Seetz, F.A. Bartog, H.P. B&m, C. Blomberg, 
0-S. Akkerman and F. Bickelhaupt* 

Vakgroep Organische Chemie, Vrije Dniversiteit 
De Boelelaan 1083, 1081 AV Amsterdam, The Netherlands 

Careful addition of 1,3_dibramopropane (2) to magnesium in Et20 yields 1,3-bistbromo- 
magnesio)propane (1) which is purified via "magnesacyclobutane" (a. Reactions of A 
with H20, COP, AgBr2 and Me3SnCl are reported. MgBr2 catalyses the decomposition of 
l_ to allylmagnesium bromide (A). 

Repeated attempts to prepare a digrignard reagent from 1,3-dihalopropanes have met with 

failurel. Instead, y-elimination occurs and cyclopropane is formed in good yield 
lb . This latter 

reaction has been exploited in the synthesis of many carbocyclic and heterocyclic three- 

membered rings*. There have been speculations 
*a,e and indications 

2h 
for the intermediate forma- 

tion of mono- and diorganomagnesium compounds, but conclusive evidence is lacking. 

We found that under proper reaction conditions, 1,3-bis(bromomagnesio)propane (2 can be 

obtained in a synthetically useful way (ca. 30% yield) by the direct reaction of magnesium with 

1,3-dibromopropane (2). 

n n I 
+ BrMg(CH2)6MgBr + 

Br Br MgBr MgBr MgBr 

2 1 3 4 - - - 

+ other products 

~11 experiments were performed in a fully sealed and evacuated glass apparatus3, although 

this is not necessary for preparative purposes. At room temperature, 34.2 g 2 (170 mmol) in 

200 ml Et20 is added under stirring during 24 h to 24 g magnesium (triply sublimed: 1 mol) in 

1.5 1 Et20. After this time, ,& is completely consumed; acid/base and complexon titration show 

that 40-45% basic material is formed, about two thirds of which may be attributed to &, the 

rest being mostly due to 2 
lb and 4 ..n. 

Pure k was obtained from the reaction mixture via its dialkylmagnesium analog 5_ (vide 

infra) and characterized by its NMR spectra: 1 

(t. 3JHA = 6.8 liz, 4 H), 2.12 ppm (quint., 3J 

H NMR (90 MHs,Et2C-~10, 
0 4 

20 C 1 : 6 = -0.05 ppm 

20°C) : 6 = 14.7 ppm (t, 'Jm 

BB = 6.8 Hz, 2 H); c NMR (62.89 MKa. Et20-alo, 

= 97.9 HZ, C(a), C(y)), 23.4 ppm (t, 'J = 122.1 Hz. C(6)).It is 
. CS 
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surprising to notice that in spite of the expected higher accumulation of negative charge in 

the carbon skeleton, both the 'H and the 
13 

C resonances are at slightly lower field than those 

of n-propylmagnesium bromide5; the small '5 cA indicates rather high s-character in the carbon- 

magnesium bond. 1 was further characterized by reaction with water to give propane, with Co2 to 

give glutaric acid, with HgBr2 to give 6, and with trimethyltin chloride to give 2. 

kgBr HgBr 

6 

Id) HgBr2 + /\ + A 

Based on 2, 6, was obtained in 30% yield6, thus confirming the yield of 1 from 2. On heating 

7 
- 

to its melting point [177.5OC) , $,decomposed to give Hg2Br2 (loo%), cyclopropane (76%) and 

propene (24%). Contrary to the experience of Costa and Whitesides with the chloro analog of 5 

(1,3-bis(chloromercurio)propar~e)~ , &did react with magnesium in diethyl ether (stirring for 1 

week at 25OC) to yield 70% of I.; in THF, $_ yielded .& together with considerable amounts of 5 

Costa and Whitesides have obtained A in a mixture with variable amounts of other Grignard 

reagents by a five-step procedure starting from allene7. The direct preparation of l_ from the 

readily available 2 in a one-step reaction may be considered as a considerable improvement; how- 

ever, for the new route to be really attractive, a convenient way to purify _l_was desirable. 

We achieved this goal by evaporating the reaction mixture obtained from &and magnesium to dry- 

ness and adding THF to the residue; part of the material dissolves , while a white precipitate of 

pure 1 (an oligomer of magnesacyclobutane) is formed. 

n THF + 
< 

MgBr2 

MgBr MgBr 
Et20 n 

The mode of addition of TSF is critical for success. If a large amount of TBF is added, 

not only impurities such as 2, &and MgBr2 dissolve , but also a considerable amount of 2, even 
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though pure zis only slightly soluble in pure THF (formal concentration : 0.8 mmol/l). Appa- 

rently, an excess of MgBr2 keeps 2 (or &J in solution at a ratio of MgBr2 : L = 2 : 1 (deter- 

mined by titration). We assume that complexation occurs , similar to that observed for 1,2- 

bis(bromomagnesio)cyclopropane8. This complexation leads to considerable loss ofz, but it can 

be avoided by adding THF in several, small portions. Under these conditions , MgBr2 and other 

impurities dissolve rapidly, whereas complex formation between2 and MgBr2 apparently is slow; 

50% of pure 2 (based on 1) can thus be obtained. When exactly 1 mol of MgBr2 is added per mol 

of A in diethyl ether, the precipitate dissolves and pure l_ is quantitatively reconstituted. 

Because of its slight solubility in TEF, 

Sl NMR (250 WWZ) : 6 = -0.38 ppm (t, 3~WW 

the WMR spectra of &were measured in HMPT-d_18; 

= 6.5 Hz, 4 H), 2.19 ppm (quint., 3J 

13C WMR (62.89 MHz) : 6 = 18.2 ppm (t, 'JC" = 

AH = 6.5 Hz, 

2 H); 104 Hz, C(a), C(Y)), 28.3 ppm (t, 
1 
JCH 

= 119 Hz, C(6)). 2 is not stable in HMPT (t$ = 4d). 

Costa and Whitesides reported that his unstable in THF, yielding &and n-propylmagnesium 

bromide7. We found that pure a, without MgBr2, is completely stable in diethyl ether; however, 

additional MgBr2 causes decomposition to h (we did not observe the formation of n-propyl- 

magnesium bromide), and the rate of decomposition increases with increasing amounts of MgBr2. 

We rationalize these observations as follows. For simple organomagnesium species, the hydridic 

activation of the B-hydrogen atom is well known, e.g. in the reduction of ketones'. Presumably, 

this effect is strongly intensified in &by the presence of the second magnesium atom; such 

synergistic effects have been studied in organic 1,3-di-tin compounds 
10 

. With J., the reaction 

may occur either in a similar fashion, i.e. by hydride abstraction by WgBr2 with vertical 

stabilization l"*ll by the two Mg-C bonds to give the short lived carbocation g (pathway a). 

Alternatively, the reaction may proceed by cis-elimination 
12 

in a concerted, six-center fashion 

via transition state 2, in which hydride abstraction by (intramolecularly complexed) MgBr2 is 

assisted by the second C-Mg bond (pathway b) . 

MgBr2 

r a 3 

H' H 

MgBr MgBr 

In conclusion, the reaction 

MgBr MgBr 

MgBr 
MgHBr + MgBr2 

j&with magnesium to form A, followed by purification makes 
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this interesting synthon readily available. Its application in organic and organometallic 

chemistry is being investigated. 
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